Activated Carbon Prepared From Various Plant Sources: A Review

Section: Research Article

Abstract

   Plant resources are receiving increasing attention worldwide as a kind of renewable resources with low cost and widely available, the preparation of activated carbon from these materials at low cost from various natural raw materials has become a necessity now and in the future. This review discussed different methods for obtaining activated carbon from different plant materials using different activation methods and activation agents (chemical and physical). The results of the review showed that the types of activated carbon obtained have large surface area and greater adsorption capacity. The use of low-cost and widely available raw materials for the production of activated carbon is the main objective of this study such as (corn cob, rice straw, peanut shell, oil stones, and ficus leaves). It was found that chemical activation can develop both microporosity and surface area. The best raw material used is peanut shell, which can then be used in the field of environmental pollution (dyes, pesticides, heavy metal ions, phenolic compounds and other organic and inorganic pollutants). It was found that the adsorption process using activated carbon is a method that can be applied to remove various pollutants.

References

  1. Abate, G. Y., Alene, A. N., Habte, A. T., & Getahun, D. M. (2020). Adsorptive removal of malachite green dye from aqueous solution onto activated carbon of catha edulis stem as a low cost bio-adsorbent. Environmental Systems Resesrch, 3, 123546. DOI:10.21203/rs.3.rs-35247/v4
  2. Abdelhameed, R. M., Abdel-Gawad, H., & Hegazi, B. (2020). Effective adsorption of prothiofos(O-2,4-dichlorophenyl O-ethyl S-propyl phosphorodithioate)from water using activated agricultural waste microstructure. J. Environ. Chem. Eng., 8, 103768. https://doi.org/10.1016/j.jece.2020.103768
  3. Acevedo, S., Giraldo, L., & Moreno-Pirajan, J. C. (2020). Adsorption of CO2 on activated carbons prepared by chemical activation with cupric nitrate. ACS Omega, 5(18), 10423-10432. https://doi:10.1021/acsomega.oc00342
  4. Ahmad, A., & Azam, T. (2019). Water purification technologies. Bottled Packaged Wate, 4, 83-120. DOI:10.1016/B978-0-12-815272-0.00004-0
  5. Ahmad, A. A., Al-Raggad, M., & Shareef, N. (2021). Production of activated carbon derived from agricultural by-products via microwave-induced chemical activation: a review. Carbon Letters, ISSN 2233-4998. https://doi.org/10.1007/s42823-020-00208-z
  6. Ahmad, F., Daud, W. M. A. W., Ahmad, M. A., Radzi, R., & Azmi, A. A. (2013). The effects of CO2 activation,on porosity and surface functional groups of cocoa(Theobroma cacao)-shell-based activatedcarbon. J. Environ. Chem. Eng., 1(3), 378-388. https://doi.org/10.1016/j.jece.2013.06.004
  7. Ahmad, M. A., & Alrozi, R. (2011). Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, Kinetic and thermodynamic studies. Chemical Engineering Journal, 171(2), 510-516. https://doi.org/10.1016/j.cej.2011.04.018
  8. Ahsaine, H. A., Anfar, Z., Zbair, M., Ezahri, M., & Alem, N. (2018). Adsorptive removal of methylene blue and crystal violet onto micro mesoporous Zr3O/activated carbon composite:a joint experiment and statistical modeling considerations. Journal of Chemistry. https://doi.org/10.1155/2018/6982014
  9. Alagumuthu, G., & Rajan, M. (2010). Equilibrium and kinetics of adsorption of fluoride onto zirconium impregnated cashew nut shell carbon. Chemical Engineering Journal, 158(3), 451-457. https://doi.org/10.1016/j.cej.2010.01.017
  10. Alam, M. G., Danish, M., Alanazi, A. M., Ahmad, T., & Abdul Khalil, H. P. S. (2023). Response surface methodology approach of phenol removal study using high-quality activated carbon derived from H3PO4 activation of Acacia mangium wood. Diamond and Related Materials, , 158, 451. https://doi.org/10.1016/j.diamond.2022.109632
  11. Alonso, D. M., Wettstein, S. G., & Dumesic, J. A. (2012). Bimetallic catalysts for up grading of biomass to fuels and chemicals. Chem. Soc. Rev., 3, 24. https://doi.org/10.1039/C2CS35188A
  12. AL-Othman, Z. A., Ali, R., & Naushad, M. (2012). Hexavalnt chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies. Chem. Eng. J., 184, 238-247. https://doi.org/10.1016/j.cej.2012.01.048
  13. Bell-Hutle, V., Atenco-Fernandaz, P., & Reyes-Mazzoco, R. (2010). Adsorption studies of methylene blue and phenol onto pecan and castile nutshells preparaed by chemical activation. Revista Mexicana de Ingenieria Quimica, 9(3), 313-322. https://www.redalyc.org/pdf /620/62016236006.pdf
  14. Bilal, M., Ali, J., Khan, M. Y., Uddin, R., & Kanwl, F. (2021). Synthesis and characterization of activated carbon from Capparis decidua for removal of Pb(II) from model aqueous solution: kinetic and thermodynamics approach. Desalination and water Treatment, 221, 185-196. DOI:10.5004/dwt.2021.27041
  15. Boopathy, R., Karthikeyan, S., Mandal, A. B., & Sekaran, G. (2013). Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies. Environ. Sci. Pollut. Res. Int., 20(1), 533-42. DOI: 10.1007/s11356-012-0911-3
  16. Budianto, A., Kusdarini, E., Amrullah, N. H., Udyani, K., Aidawiyah, A. (2021). Physics and chemical activation to produce activated carbon form empty palm oil bunches waste. IOP Conf. Series: Materials Science and Engineering. DOI: 10.1088/1757-899X/1010/1/012016
  17. Campos, G. A. F., Perez, J. P. H., Block, I., Sagu, S. T., Celis, P. S., Taubert, A., & Rawel, H. M. (2021). Preparation of activated carbons from spent coffee and coffee parchment and assessment of their adsorbent efficiency. Mathematisch-Naturwissenchaftliche fakultat, 9, 1396. https://doi.org/10.3390/pr9081396
  18. Castaneda-Olivera, C. A., Perez, H. R., Suaza, R. R. B., Alfaro, E. G. B., Hacha, R. R., & Merma, A. G. (2023). Use of activated carbon from prunus persea americana for the removal of arsenic and lead in contaminated water. Chemical Engineering Transactions, 100, 1-6. DOI: 10.3303/CET23100001
  19. Chandana, L., Krushnamurty, K., Suryakala, D., & Subrahmanyam, C. (2019). Low-cost adsorbent derived from the coconut shell for the removal of hexavalent chromium from an aqueous medium. Materialstoday, 26(1), 44-51. http://doi.org/10.1016/j.matpr.2019.04.205
  20. Chang, K., Chen, C., Lin, J., Hsien, J., Wang, Y., Zhano, F., Shih, Y., Xing, Z., & Chen, S. (2014). Rice straw-derived activated carbons for the removal of carbofuran from an aqueous solution. New Carb. Mater., 29(1), 47-54. https://doi.org/10.1016/S1872-5805(14)60125-6
  21. Chavoshani, A., Hashemi, M., Mehdi Amin, M., & Ameta, S. C. (2020). Risks and Challenges of Pesticides in Aquatic environment. In book: Micropollutants and Challenges, DOI:10.1016/B978-0-12-818612-1.00005-2
  22. Chen, S., Liu, Z., Jiang, S., & Hou, H. (2020). Carbonization: A Feasible route for reutilization of plastic wastes. Sci. Total Environ., 6, 123. https://doi.org/10.1016/j.scitotenv.2019. 136250
  23. Das, S., & Mishra, S. (2020). Insight into isotherm modelling kinetic and thermodynamic exploration of iron adsorption from aqueous media by activated carbon developed from Limonia acidissima shell. Materials Chemistry Physics, 245, 122751. DOI:10.1016/j.matchemphys.2020.122751
  24. Dejene, K., Siraj, K., & Kitte, S. A. (2016). Kinetic and therodynamic study of phenol removal from water using activated carbon synthesizes from Avocado kernel seed. International Letters of Natural Sciences, 54, 42-57. DOI:10.18052/www.scipress.com/ILNS.54.42
  25. Dong, L., Hou, L., Wang, Z., Gu, P., Chen, G., & Jiang, R. (2018). A new function of spent activated carbon in BAC process: removing heavy metals by ion exchange mechanism. J. Hazard. Mater., 359, 76-84. DOI:10.1016/j.jhazmat.2018.07.030
  26. Dural, M. U., Cavas, L., Papageorgiou, S. K., & Katsaros, F. (2011). Methylene blue adsorption on activated carbon Posidonia oceanica(L.) dead leaves: kintics and equilibrium studies. Chemical Engineering Journal, 168(1), 77-85. https://doi.org/10.1016/j.cej.2010.12.038
  27. Foo, K. Y., & Hameed, B. H. (2010). Detoxification of pesticide waste via activated carbon adsorption process. J. Hazard. Mater., 175(1-3), 1-11. https://doi.org/10.1016/j.jhazmat.2009.10.014
  28. Ganjoo, R., Sharma, S., Kumar, A., & Daouda, M. M. A. (2023)Activated carbon: Fundamentals, Classification and Properties. In book: Activated carbon. DOI:10.1039/BK9781839169861-00001
  29. Genli, N., Sahin, O., Baytar, O., Horoz, S. (2021). Synthesis of Activated carbon in the presence of hydrochar form chickpea stalk and its charactization. Journal of Ovonic Research, 17(2), 117-124. DOI:10.15251/JOR.2021.172.117
  30. Gilani, A. G., Gilani, H. G., Azmoon, P., & Chaibakhsh, N. (2019). Phenol adsorption from aqueous phase onto prepared low-cost carbon from natural sources: A comparative study. Physical Chemistry Research, 7(2), 327-346. DOI: 10.22036/pcr.2019.160071.1572
  31. Guo, F., Jiang, X., Jia, X., Liang, S., & Qian, L. (2020). Sythesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green. Materials Chemistry and Physics, 240, 122240. https://doi.org/10.1016/j.matchemphys.2019.122240
  32. Guo, Y., Tan, C., Sun, J., Zhang, W., Li, J., & Zhao, O. (2020). Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption. Chem. Eng. J., 381, 122736. https://doi.org/10.1016/j.cej.2019.122736
  33. Hamad, B. K., Noor, A. M., Afida, A. R., & Mohd Asri, M. N. (2010). High removal of 4-chloroguaiacol by the high surface area of oil palm shell-activated carbon activated with NaOH from aqueous solution. Desalination, 257(1-3), 1-7. https://doi.org/10.1016/j.desal.2010.03.007
  34. Herawan, S. G., Hadi, M. S., & Ayob, M. R. (2013). Putra A. Characterization of activated carbons from the oil-palm shell by CO2 activation with no holding carbonization temperature. Sci. World J., 5, 123. DOI:10.1155/2013/624865
  35. Hernandez-Montoya, V., Mendoza-Castillo, D. I., Bonilla-Petriciolet, A., Montes-Moran, M. A., & Perez-Cruz, M. A. (2011). Role of the pericarp of carya illinoinsis as biosorbent and as precursor of activated carbon for the removal of lead and acid blue 25 in aqueous solution. Journal of Analytical and Applied Pyrolysis, 92(1), 143-151. https://doi.org/10.1016/j.jaap.2011.05.008
  36. Hernandez-Montoya, V., Ramirez-Montoya, L. A., Bonilla-Petriciolet, A., & Montes-Moran, M. (2012). Optimizing the removal of fluoride from water using new carbons obtained by modification of nut shell with a calcium solution from egg shell. Biochemical Engineering Journal, 62, 1-7. https://doi.org/10.1016/j.bej.2011.12.011
  37. Hoseinzadeh-Hesas, R., Arami-Niya, A., Wan Daud, W. M. A., & Sahu, J. N. (2013). Preparation of granular activated carbon from oil palm shell by microwave-induced chemical activation:Optimisation using surface response methodology. Chem. Eng. Res. Des., 91(12), 2447-2456. http://dx.doi.org/10.1016/j.cherd.2013.06.004
  38. Ioannidou, O. A., Zabaniotou, A. A., Stavropoulos, G. G., Islam, M. A., & Albanis, T. A. (2010). Preparation of activated carbons from agricultural residues for pesticide adsorption. Chemosphere, 80(11), 1328-1336. https://doi.org/10.1016/j.chemosphere.2010.06.044
  39. Islam, M. A., Ahmed, M. J., Khanday, W. A., Asif, M., & Hameed, B. H. (2017). Mesoporous activated coconut shell-derived hydrochar preparaed via hydrothermal carbonization-NaOH for methylene blue adsorption. J. Environ. Manag., 203, 237-244. https://doi.org/10.1016/j.jenvman.2017.07.029
  40. Kadir, S. A. S. A., Matali, S., Mohamad, N. F., & Abdul Rani, N. H. (2014). Preparation of activated carbon from oil palm empty fruit bunch(EFB)by steam activation using response surface methodology. Int. J. Mater. Sci. Appl., 3(5), 159. doi: 10.11648/j.ijmsa.20140305.15
  41. Kaminska, A., Miadlicki, P., Kielbasa, K., Kujbida, M., Srenscek-Nazzal, J., Wrobel, R. J., & Wroblewska, A. (2021). Activated Carbons Obtained from Orange Peels,Coffee Grounds,and Sunflower Husks-Comparison of Physicochemical Properties and Activity in the Alpha-Pinene Isomerization Process. Materials (Basel), 14, 7448. https://doi.org/10.3390/ma14237448
  42. Khadhri, N., EL Khames Saad, M., Ben Mosbah, M., & Moussaoui, Y. (2019) Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole. J. Environ. Chem. Eng., 7, 102775. https://doi.org/10.1016/j.jece.2018.11.020
  43. Khellouf, M., Chemini, R., Salem, Z., Khodje, M., & Zerire, D. (2019).Optimization of preparation and application of activated carbon derived from cypress cones. Algerian Journal of Environmental Science and Technology, 5(1), 841-851. https://www.researchgate.net/publication/333017186
  44. Kra, D. O., Allou, N. B., Atheba, P., Drogui, P., & Trokourey, A. (2019). Preparation and characterization of activated carbon based on wood(Acacia auriculeaformis, Cote d Ivoire). Journal of Encapsulation and Adsorption Sciences, 9(2), 63-82. DOI:10.4236/jeas. 2019.92004
  45. Li, K., Zheng, Z., & Li, y. (2010). Characterization and lead adsorption properties of activated carbon prepared from cotton stalk by one-step H3PO4 activation. J. Hazard. Mater., 181(1-3), 440-447. https://doi.org/10.1016/j.jhazmat.2010.05.030
  46. Liang, L., Li, L., Chen, R., Meng, J., Liu, H., Guo, C., Bao, W., Yao, D., Zhang, G., & Yu, F. (2024). Research advances in plant-derived activated carbon for electric double layer capacitors. Journal of Alloys and Compounds, 992, 174641. https://doi.org/10.1016/j.jallcom.2024.174641
  47. Madani, N., Moulefera, I., Boumad, S., Cazorla-Amoros, D., Gandia, F. J. U., Cherifi, O., & Bouchenafa-Saib, N. (2022). Activated carbon from stipa tenacissima for the Adsorption of Atenolo. Journal of carbon Research, 8, 66. https://doi.org/10.3390/c8040066
  48. Mahamad, M. N., Zaini, M. A. A., Zakaria, Z. A. (2015). Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Ini. Biodeter. Biodegrad, 102, 274-280. http://dx.doi.org/10.1016/j.ibiod.2015.03.009
  49. Mahdi, S. A., & Hussien, F. M. (2022). Effect of ficus leaf modification and coal to removad p-Nitrophenol from aqueous solutions. Egyptian Journal of Chemistry, 65(13), 591-600. DOI: 10.21608/EJCHEM.2022.127959.5676
  50. Mandal, S., Stephen, D., & Janardhanan, S. K. (2024). Activated carbon with composite pore structures made from peanut shell and areca nut fibers as sustainable adsorbent material for the efficient removal of active pharmaceuticals from aqueous media. RSC Sustainability, 2, 3022-3035. DOI: 10.1039/D4SU00262H
  51. Masoumi, S., & Dalai, A. K. (2020), Optimized production and charaterization of highly porous activated carbon from algal-derived hydrochar. J. Clean. Prod., 263, 121427. https://doi.org/10.1016/j.jclepro.2020.121427
  52. Mazlan, M. A. F., Uemura, Y., Yusup, S., Elhassan, F., Uddin, A., Hiwada, A., & Demiya, M. (2016). Activated carbon from rubber wood sawdust by carbon dioxide activation. Procedia Engineering., 148, 530-537. https://doi.org/10.1016/j.proeng.2016.06.549
  53. Md Arshad, S. H., Ngadi, N., Abdul Aziz, A., Saidina Amin, N., Jusoh, M., & Wong, S. (2016). Preparation of activated carbon empty fruit bunch for hydrogen storage. J. Energy Storage, 8, 257-261. https://doi.org/10.1016/j.est.2016.10.001
  54. Meryemoglu, B., Irmak, S., & Hasanoglu, A. (2016). Production of activated carbon materials from kenaf biomass to be uses as catalyst support in the aqueous-phase reforming process. Fuel Process. Technol., 151, 59-63. https://doi.org/10.1016/j.fuproc.2016.05.040
  55. Misran, E., Bani, O., Situmeang, E. M., Purba, A. S. (2018). Removal efficiency of methylene blue using activated carbon from waste banana stem: Study on pH influence. IOP Conference Series: Earth and Environmental Science. DOI 10.1088/1755-1315/122/1/012085
  56. Mourao, P. A. M., Laginhas, C., Custodio, F., Nabais, J. M. V., Carrot, P. J. M., & Ribeiro Carrott, M. M. L. (2011). Influence of oxidation process on the adsorption capacity of activated carbon from lignocellulosic precursors. Fuel Processing Technology, 92(2), 241-246. https://doi.org/10.1016/j.fuproc.2010.04.013
  57. Najmi, S., Hatamipour, M. S., Sadeh, P., Najafipour, I., & Mehranfar, F. (2020). Activated carbon produced from Glycyrrhiza glabra residue for the adsorption of nitrate and phosphate:batch and fixed-bed column studies. SN Applied Sciences. 2(4), 773. https://doi.org/10.1007/s42452-020-2585-7
  58. Nawaz, T., & Sengupta, S. (2019). Contaminants of Emerging cocern: occurrence,fate, and remediation. Advances in water purification Techniques, 5, 67. https://doi.org/10.1016/B978-0-12-814790-0.00004-1
  59. Neme, I., Gonfa, G., & Masi, C. (2022). Preparation and characterization of activated carbon from castor seed hull by chemical with H3PO4. Results in Materials, 15, 100304. https://doi.org/10.1016/j.rinma.2022.100304
  60. Njoku, V. O., Islam, M. A., Asif, M., & Hameed, B. H. (2014). Preparation of Mesoporous activated carbon from coconut frond for the adsorption of carbofuran insecticide. J. Anal. Appl. Pyrolysis., 110, 172-180. http://dx.doi.org/10.1016/j.jaap.2014.08.020
  61. Obregon-Valencia, D., & Sun-Kou, M. R. (2014). Comparative cadmium adsorption study on activated carbon prepared from aguaje(Mauritia Flexuosa)and olive fruit stones (Olea europaea L.). J. Environ. Chem. Eng., 2(4), 2280-2288. http://dx.doi.org/10.1016/j.jece.2014.10.004
  62. Ooi, C., Cheah, W., Sim, Y., Pung, S., & Yeoh, F. (2017). Conversion and characterization of activated carbon fiber derived from palm empty fruit bunch waste and its kinetic study on urea adsorption. J. Environ. Manage., 197, 199-205. http://dx.doi.org/10.1016/j.jenvman.2017.03.083
  63. Ould-Idriss, A., Stitou, M., Cuerda-Correa, E. M., Fernandez-Gonzalez, C., macias-Gorci, A., Alexandre-Franco, M. F., & Gomez-Serrano, V. (2011). Preparation of activated carbons from olive-tree wood revisited.II.physical activation with air. Fuel Processing Technology, 92(2), 266-270. DOI:10.1016/j.fuproc.2010.05.018
  64. Ouyang, J., Zhou, L., Liu, Z., Heng, J. Y. Y., & Chen, W. (2020). Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: a review. Sep. Purif. Technol, 253, 117536. https://doi.org/10.1016/j.seppur.2020.117536
  65. Pagketanang, T., Artnaseaw, A., Wongwicha, P., & Thabuot, M. (2015). Microporous activated carbon from KOH-activation of rubber seed-shells for application in capacitor electrode. Energy Procedia, 79, 651-656. http://dx.doi.org/10.1016/j.egypro.2015.11.550
  66. Pereira, R. G., Veloso, C. M., Da Silva, N. M., De Sousa, L. F., Bonomo, R. C. F., De Souza, A. O., Da Guarda, S. M. O., & Fontan, F. D. I. (2014). Preparation of activated carbons from cocoa shells and siriguela seeds using H3PO4 and ZnCl2 as activating agents for BSA and α- lactalbumin adsorption. Fuel Process. Technol., 126, 476-486. http://dx.doi.org/10.1016/j.fuproc.2014.06.001
  67. Prashanthakumar, T. K. M., Ashok kumar, S. K., & Sahoo, S. K. (2018). A quick removal of toxic phenolic compounds using porous carbon preparaed from renewable biomass coconut spathe and exploration of a new source for porous carbon materials. J. Env. Chem. Eng., 6(1), 1434-1442. https://doi.org/10.1016/j.jece.2018.01.051
  68. Purnomo, C. W., Kesuma, E. P., Perdana, I., & Aziz, M. (2018). Lithium recovery from spent LI-ion batteries using conconut shell activated carbon. Waste Manag., 79, 454-461. https://doi.org/10.1016/j.wasman.2018.08.017
  69. Qambrani, N. A., Rahman, M. M., Won, S., Shim, S., &Ra, C. (2017). Biochar properties and eco-friendly applications for climate change miligation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev., 79, 255-73. DOI: 10.1016/j.rser.2017.05.057
  70. Quan, C., Gao, N., & Song, Q. (2016). Pyrolysis of biomass components in a TGA and a fixed-bed reactor:Thermochemical behaviors, kinetics, and product characterization. J. Anal. Appl. Pyrolysis, 121, 84-92. https://doi.org/10.1016/j.jaap.2016.07.005
  71. Queiroz, L. S., De Souza, L. K. C., Thomaz, K. T. C., Leite Lim, E. T., Da Rocha Filho, G. N., Do Nascimento, L. A. S., De Oliveira Pires, L. H., De Faial, K. C. F., & Da Costa, C. E. F. (2020). Activated carbon obtained from amazonian biomass tailings(acai seed): Modification, characterization, and use for of metal ions from water. J. Environ. Manage., 270, 110868. https://doi.org/10.1016/j.jenvman.2020.110868
  72. Sajjadi, S., Mohammadzadeh, A., Tran, H. N., Anastopoulos, I., Dotto, G. L., Lopicic, Z. R., Sivamani, S., Rahmani-Sani, A., Ivanets, A., & Hosseini-Bandegharaei, A. (2018). Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. Journal Enviromental Management, 223, 1001-1009. https://doi:10.1016/j.jenvman.2018.06.077
  73. Saleem, J., Shahid, U. B., Hijab, M., Mackey, H., & Mckay, G. (2019). Prodution and applications of activated carbons as adsorbents from olive stones. Biomas Conversion and Biorfinery, 9, 775-802. DOI:10.1007/s13399-019-00473-7
  74. Salman, S. D., Rasheed, I. M., & Ismaeel, M. M. (2022). Removal of diclofenac removal from aqueous solution on apricot seeds activated carbon synthesized by pyro carbonic acid microwave. Chemical Data Collections, 43, 27. DOI:10.1016/j.cdc.2022.100982
  75. Salomon, Y. L., Georgin, J., Franco, D. S. P., Netto, M. S., Piccilli, D. G. A., Foletto, E., Pinto, D., Oliveira, M. L. S., & Dotto, G. L. (2021). Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon. Journal of Molecular Liquids, 347, 117990. https://doi.org/10.1016/j.molliq.2021.117990
  76. Sellaoui, L., Lima, E. C., Dotto, G. L., Dias, S. L. P., & Ben Lamine, A. (2017). Physicochemical modeling of reactive violet 5 dye adsorption on the homemade cocoa shell and commercial activated carbons using the statistical physics theory. Results in Physics, 7, 233-237. https://doi.org/10.1016/j.rinp.2016.12.014
  77. Semercioz, A. S., Gogus, F., Celekli, A., & Bozkurt, H. (2017). Development of carbonaceous material from grapefruit peel with microwave implemented-low temperature hydrothermal carbonization technique for the adsorption of Cu(II). J. Clean. Prod., 165, 599-610. https://doi.org/10.1016/j.jclepro.2017.07.159
  78. Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., & Shamiri, A. (2010). Review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis, 89(2), 143-151. https://doi.org/10.1016/j.jaap.2010.07.006
  79. Shaheen, S. M., Niazi, N. K., Hassan, N. E. E., Bibi, I., Wang, H., Tsang, D. C. W., Ok, Y. S., Bolan, N., & Rinklebe, J. (2019). Wood-based biochar for the removal of potentially toxic element in water and wastewater: a critical review. Int. Mater. Rev., 64(4), 216-247.https://doi.org/10.1080/09506608.2018.1473096
  80. Shen, Z., Zhang, Y., McMillan, O., Jin, F., & Al-Tabbaa, A. (2017). Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environ. Sci. Pollut. Res.Int., 24(14), 12809-12819. DOI: 10.1007/s11356-017-8847-2
  81. Sujitha, R., & Ravindhranath, K. (2016). Removal of Coomassie brilliant blue dye from waste water using active carbon derived from barks of ficus racemose plant. Der Pharmacia Lettre, 8(10), 72-83. http://scholarsresearchlibrary.com/archive.html
  82. Sulaiman, F., Abdullah, N., Gerthauser, H., & Shariff, A. (2011). An outlook of Malaysian energy, oil palm industry and utilization of wastes as useful resources. Biomass Bioenergy, 35(9), 3775-3786. https://doi.org/10.1016/j.biombioe.2011.06.018
  83. Surugau, N., & Chong, H. L. H. (2019). Application of oil palm empty fruit bunch as adsorbent: A review. Transactions on Science and Technology, 6(1), 9 – 26. https://www.researchgate.net/publication/331035589
  84. Tadda, M. A., Ahsan, A., Shitu, A., Elsergang, M., Arunkumar, T., Jose, B., Abdur Razzaque, M., & Nik Daud, N. N. (2016). A review on activated carbon:process, application and prospects. Journal of Advanced Civil Engineering Practice and Research, 2(1), 7-13. http://ababilpub.com/download/jacepr2-1-3/
  85. Tharaneedhar, V., Senthi Kumar, P., Saravanan, A., Ravikumar, C., & Jaikumar, V. (2017). Prediction and interpretation of adsorption parameters for the sequestration of methylene blue from aqueous solution using microwave assisted corncob activated carbon. Sustainable Materials and Technologies, 11, 1-11. http://dx.doi.org/10.1016%2Fj.susmat.2016.11.001
  86. Timur, S., Kantarli, I. C., Onenc, S., & Yanik J. (2010). Characterization and application of activated carbon produced from oak cups pulp. Journal of Analytical and Applied pyrolysis, 89(1), 129-136. https://doi.org/10.1016/j.jaap.2010.07.002
  87. Varsihini, J. S., Das, D., & Das, N. (2014). Optimization of parameters for cerium(III)biosorption onto biowaste materials of animal and plant origin using 5-level Box-Behnken design: equilibrium, kinetic, thermodynamic and regeneration studies. Journal of Rare Earths, 32(8), 745-758. https://doi.10.1016/S1002-0721(41)60136-8
  88. Wang, T., Meng, D., Zhu, J., & Chen, X. (2020). Effects of pelletizing conditions on the structure of rice straw-pellet pyrolysis char. Fuel, 5, 13. https://doi.org/10.1016/j.fuel.2019.116909
  89. Wang, Y., Ling Wang, T., & Cao, J. (2020). Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water plant. Bioresour. Technol., 316, 123929. https://doi.org/10.1016/j.biortech.2020.123929
  90. Wang, Y., Peng, C., Padilla-Ortega, E., Robledo-Carbrera, A., & Lopez-Valdivieso, A. (2020). Cr(VI) adsorption on activated carbon: mechanisms,modeling and limitations in water treatmen. Journal of Environmental Chemical Engineering, 8, 104031. https://doi.org/10.1016/j.jece.2020.104031
  91. Wang, Y., Wang, S., Xie, T., & Cao, J. (2020). Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water and plant. Bioresoure Technol., 316, 123929. DOI: 10.1016/j.biortech.2020.123929
  92. Wojanarovits, L., Foldvary, C. M., & Takacs, E. (2010). Radiation-induced grafting of cellulose for adsorption of hazardus water pollutans: A review. Radiation Physics and Chemistry, 79(8), 848-862. https://doi.org/10.1016/j.radphyschem.2010.02.006
  93. Worldlight, B. A., Nigho, N. A., Kouoyou, D., Wilfried, M. H., Michelle, K., & Nsami, J. N. (2023). Optimal Adsorption Conditions for Tartrazine using Activated Carbon Preparaed from Groundnut Shells(Arachis hypoheae): A Comparison between Functionalized and Non-Functionalized Carbon Adsorbents. Journal of Advanced Chemical Engineering, 13, 435. DOI: 10.35248/2090-4568.23.13.276
  94. Xin-hui, D., Srinivasakannan, C., Jin-hui, P., Li-bo, Z., & Zheng-yong, Z. (2011). Comparison of activated carbon prepared from jatropha hull by conventional heating and microwave heating. Biomass Bioenergy, 35(9), 3920-3926. http://dx.doi.org/10.1016/j.biombioe.2011.06.010
  95. Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: Areview. Renewable and Sustainable Energy Reviews, 46, 218-235. https://doi.org/10.1016/j.rser.2015.02.051
  96. Yahya, M. A., Mansor, M. H., Wan Zolkarnaini, W. A. A., Rusli, N. S., Aminuddin, A., Mohamad, K., Mohamad Sabhan, F. A., Aboubaker Atik, A. A., & Ozair, L. N. (2018). A brief review on activated carbon derived from agriculture by-product. AIP Conf. Proc., DOI:10.1063/1.5041244
  97. Yang, W., Chen, H., Han, X., Ding, S., Shan, Y., & Liu, Y. (2020). Prparation of magnetic Co-Fe modified porous carbon from agricultural wastes by microwave and steam activation for mercury removal. J. Hazad. Mater., 381, 120981. https://doi.org/10.1016/j.jhazmat.2019.120981
  98. Yujiao, K., Qinyan, Y., Dong, L., & Yuwei Baoyu, G. (2017). Preparation and characterization of activated carbons from waste tea by H3PO4 activation in different atmospheres for oxytetracycline removal. J. Taiwan Inst. Chem. Eng., 71, 494-500. https://doi.org/10.1016/j.jtice.2016.12.012
  99. Zhang, J., Fu, H., Lv, X., Tang, J., & Xu, X. (2011). Removal of Cu(II) from aqueous solution using the rice husk carbons prepared by the physical activation process. Biomass and Bioenergy, 35(1), 464-472. https://doi.org/10.1016/j.biombioe.2010.09.002
  100. Zhang, Y., Song, X., Zhang, P., Gao, H., Ou, C., & Kong, X. (2020). Production of activated carbons from four wastes via one-step activation and their applications in Pb2+adsorption: Insight of ash content. Chemosphere, 245, 125587. http://dx.doi.org/10.1016/j.chemosphere.2019.125587
  101. Zhang, Z., Wang, T., Ke, L., Zhao, X., & Ma C. (2016). Powder-activated semicokes prepared from coal fast pyrolysis: influence of oxygen and steam atmosphere on pore strcture. Energy Fuels, 30, 896-903. https://doi.org/10.1021/acs.energyfuels.5b02488
  102. Zhou, J., Luo, A., & Zhao, Y. (2018). Preparation and characterization of activated carbon from waste tea by physical activation using steam. J. Air Waste Manag. Assoc., 68(12), 1269-1277. DOI: 10.1080/10962247.2018.1460282
  103. Zhu, Y., Gao, J., Li, Y., Sun, F., Gao, J., Wu, S., & Qin, Y. (2012). Preparation of activated carbon for SO2 adsorption by CO2 and steam activation. Journal of the Taiwan Institute of Chemical Engineers, 43(1), 112-119. https://doi.org/10.1016/j.jtice.2011.06.009
Download this PDF file

Statistics

Copyright and Licensing